
"REPC AD-A278 037 PAGE 1"ftift.
r-elmgq ha.u' 1w INe S. Iia I-w-rrwm"wtuiw= M~d w

th. dw" AS. I f"M &EbuoWo arwY • riNet Ow NEEn onaiU - la ,.m4 fo tN *ion OWp w o ,on . 1 ,2 1 ,aq. Su 120U. 1Vi26.VA

2220O•-. &ed to the om dpw. Wakhnm tC 20M.

A. AGENCY USE (Leav . , -3. REPORT TYPE AND DAM-"

4. TITLE AND 5. FUNDING

/7/

6.

Authors:

Wright-Patterson AFB
7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

Ada Validating Facility, Language Control Facility ASD/SCEL ORGANa mON
Bldg. 676, Room 135
Wright Patterson AFB, Dayton OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORINGfMONITORING

Ada Joint Program Office AGENCY

The Pentagon, Rm 3E118
Washington, DC 20301-3080

11.. SU ,LMENTAR N AR ,,# 1 D I

4 ~ 'C

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION
Approved for public release; distribution unlimi

13. (Maximum 200

V,. I ..: 4 ,

-.. . - 7D a

14. SUBJECT 15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Comp 16. PRICE

Ai•.,•.s4P1,lWyA.J . Testing, Ada Val. Office, Ada Val. Facili y
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION C. CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

Swalb Fom 2. (AS ".kN• Presat• by ANSI SW.

AVF Control Number: AVF-VSR-580.0294
Date WE Completed: 28 February 1994

94-01-05-GHS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940223W1.11338
Green Hills Software, Inc.

Green Hills Optimizing Ada Compiler, 1.8.7
SPARCstation 10 under SunOS, Release 4.1.3

(Final)

Prepared By:
Ada Validation Facility

645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

94-10999 94 4 1 1 SI J 11111 1111 11111 11 M 11111 111 JIll IJil

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.

Testing was completed on 23 February 1994.

Compiler Name and Version: Green Hills Optimizing Ada Compiler, 1.8.7

Host Computer System: SPARCstation 10
under SunOS, Release 4.1.3

Target Computer System: Same as host

Customer Agreement Number: 94-01-05-GHS

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 940223WI.11"338
is awarded to Green Hills Software, Inc. This certificate expires two years
after MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validation Facility
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFB CH 45433-5707

MA vaiidatxop Organizatio6n
Director, C6uputer and Software engineering Division
Institute for Defense Analyses
Alexandria VA 22311

d Joint Program Office Ao0essilon 7%
David R. Basel
Deputy Director
Defense Information Systems Agency, DTIC "
Center for Information Management

Dlist

DECLARATION OF CONFORMANCE

Customer: Green Hills Software, Inc.

Ada Validation Facility: Hq 645 C-CSG/SCSL
Standard Languages Section
Systems Technology Branch
Wright-Patterson AFB OH 45433-5707

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Green Hills Optimizing Ada compiler
Version 1.8.7

Host Computer System: Sun Sparc Station 10 running SunOS 4.1.3

Target Computer System: Same as host

Customer's Declaration

I, the undersigned, representing Green Hills Software, Inc., declare
that Green Hills Software, Inc., has no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation listed in this declaration. I declare that Green Hills
Software, Inc. is the OWNER of the above implementation and the
certificates shall be awarded in the name of the OWNER'S corporate name.

Date: Feb. 23, 1993

ganiel O'Dowd, President
Green Hills Software, Inc.
510 Castillo Street
Santa Barbara CA 93101

TABLE OF CCNENTS

OIAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMARY RER 1-1
1.2 REP E 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IJPLDIMENTIT4N DEPEDENCIES

2.1 WITHDRAWI TESTS 2-1
2.2 INAPPLICABLE TESTS....... 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFIORMATICN

3.1 TESTING ENVIRONMENT.3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPEDIX F OF THE Ada STANDARD

i

CHAPTER 1

INTRODCTION

The Ada implementation described above was tested according to the Ada
Validation' Procedures (Pro92] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92].
A -detailed description of the ACVC may be found in the current ACVC User's
Guide (UG89].

1.1 USE OF THIS VALIDATION SMIAURY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 12161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

IN9DUTON

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Pro2ranin• Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Coupliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,

"B-, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

.The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the -Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

.Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INT40CUCTICN

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG891).

In order to pass an ACVC an M.ia implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation suiary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses coanon storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfull:y
Implementation either by AVF testing or by registration [Pro92].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IM•.LEDNTATIMC DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C355083
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C457651A C46022A B49008A B49008B A54BO2A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDlB02B BD1B06A
ADIBO8A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2Bl5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE318A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLDEMM TICNt DEPED CIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTE!.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45423A, C45523A, and C45622A check that the proper exception is raised
if MACHINE OVERFLOWS is TRUE and the results of various floating-point
operations - lie outside the range of the base type; for this
implementation, MACHINEOVERFLOWS is FALSE.

C455311..P and C45532m..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009F checks whether a generic non-library subprogram can be
instantiated before the separate compilation of its body (and any of its
subunits); this implementation requires that the body and subunits of a
generic non-library subprogram be in the same compilation as the
specification if instantiations precede them. (See section 2.3.)

LA3004B, EA3004D, and CA3004F check pragma INLINE for functions; this
implementation does not support pragma INLINE for functions.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminanits without defaults; these instantiations are rejected by
this compiler.

2-2

IMPLEE4NTATION DEPEDECIES

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT I0
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the gtven combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEWEZTIAL0IO
CE2102E CREATE OUT FILE SEWE _TIALO0
CE2102F CREATE INOUT FILE DIRECT 10
CE21021 CREATE IN FILE DIRECT-10
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SE 4TIOAL 10
CE21020 RESET IN-FILE SEaZNTIALI0
CE2102P OPEN OUTr FILE SEMITVIAL IO
CE2102Q RESET WUT"FILE SEQUENTIALO0
CE2102R OPEN iN0fyr FILE DIRECT 10
CE2102S RESET INOOfTFILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN-FILE DIREC--IO
CE2102V OPEN OUT FILE DIRECT-I0
CE2102W RESET UT--FILE DIRECT-IO
CE3102E CREATE IN fILE TEXT 15
CE3102F RESET Any Mode TET--IO
CE3102G DELETE TE)T-I0
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TExTIO
CE3102K OPEN CIO FILE TEXTIO.

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE ERRC'1 is raised when this
association is attempted.

CE2107B..E CE2107G..H CE2107L CE2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this-implementation cannot restrict
file capacity.

2-3

IMPLDEEI!TION DEPEDCIES

Cz3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERWU
if they specify an inapproprTate value for The external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERRO when the value of the page
number exceeds COUM'IAST; for this implementation, the value of
COUTIr'LAST is greater than 150000, making the checking of this objective
impractical.

2.3 TEST MCODIFICATIONS

Modifications (see section 1.3) were required for 6 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way

-expected by the original tests.

B22003A B83033B B85013D

CA2009F was graded inapplicable by Evaluation Modification as directed by the
AVO. This test contains instantiations of generic non-library subprograms
prior to the compilation of their bodies; as allowed by AI-00408 and
AX-,00506, the compilation of the generic subprogram bodies (subunits) makes
the compilation unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contain uses of the types that require a constraint. However, the
generic bodies are compiled after the units that contain the instantiations,
and this implementation creates a dependence of the instan- tiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units obsolete-no
errors are detected. The processing of these tests was modified by
re-compiling the obsolete units; all intended errors were then detected by
the compiler.

2-4

CHAPTER 3

PROCESSING INFORMATICK

3.1 TESTING ENVIF@0MEN

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

David Chandler
Green Hills Software, Inc.
510 Castillo St.
Santa Barbara, CA 93101
(805) 965-6044

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SU!MMRY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system - if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFUMTICN

a) Total Number of Applicable Tests 3790
b) Total Number of withdrawn Tests 104
c) Processed Inapplicable Tests 75
d) Non-Processed I1/ Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 276 (c~d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked and executed on the host computer system.
The results were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. No explicit options were used for testing this
implementation.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MA= PARAMETS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximuim input-line length, which is
the value for $NAX IN LEN--also listed here. These values are expressed here
as Ada string aggriegates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX_3NLE 200 - Value of V

$BIG IDl (l..V-1 -> 'A', V -> 'I')

$BIGID2 (l..V-l -> 'A', V -> '2')

$BIGID3 (l..V/2-> 'A') & '3' &
(l..V-1-V/2-> 'A')

SBIGID4 (i..V/2 -> 'A') & '4' &
(l..v-1-v/2 -> 'A')

$BIGINTLIT (I..V-3-> '0') & "298"

$BIG_REALLIT (l..V-5-> '0') & "690.0"

SBIGSTRINGI '"' & (l..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (1..V-l-V/2 -> 'A') & '1' £ '"'

SBLANKS (I..V-20 -> '

$MAX_LENINTBASEDLITERAL
"2:" & (l..V-5 -> '0') & "1l:"

$MAX_LEREAL BASED LITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

A-1

MAM PARAMETERS

$MAX_STRINGLITEAL '" & (l..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC_SIZE 32

$ALIGNMET 4

$COUNTLAST 2_147_483_646

SDEFAULT MENSIZE 1024

$DEFAULTSTORUNIT 8

$DEFAULTSYSNAME SERVER

$DELThDOC 2.0**(-31)

S$ETRYADDRESS 16#0#

$ENTRY•ADDRESSi 16#1#

$E•TRYADDRESS2 16#2#

$FIELDLAST 2147_483_647

$FILETERMINATOR '

$FIXEDNAME NOSUCH FIXE TYPE

$FLQ0ATNAME NOSUCHFLOATTYPE

$FORMSTRING "

$FORMSTRING2 "CANNOT RESTRICT FILE CAPACITY"

$GREATER THAN DUJRATION4
-- 90_000.0

$GREATER THAN DURATION BASE LAST
TOooooo000.0

$GREATER THAN FLOAT BASE LAST
3.SE+38

$GREATER THAN FLOAT SAFE LARGE
-- -- 3.E38

A-2

MACRO PAPJAIWRS

$GREAER THANSHORTFLOAT SAFE LARGE
- 1.01308

$HIGHPRIORITY 20

$ILLEGLEXTERALFILE NAME1

$ILLEGA~LEXTERNALFILE NAME2
- wwIFroRx/FILEMME2

$I-KP"RPRIATE LINE LENGTH

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDE_PRAGMAI PRAGMA INCLUDE ("A28006DI.ADA")

$rNCLUDEPRAGKA2 PRAGMA INCLDE ("B28006F1.AA")

$INTEGER_ FIRST -2147483648

$INTEGERLAST 2147483647

$INTEGER LASTPLUS• 1 2147483648

$ INTERFACE LANGUE C

$LESS_ THANDURATIO -90_000.0

$LESS_THAN DURATION BASS FIRST
-- oo000 000.0

SLINETER•INRIVR ASCII.LF

$LOWPRIORITY 1

$MACHINECODE _STATEMT
asm'(inst -> ""nop"");

$MACHINE_CODE_TYPE INSTRUCTION

$MAMNISSA_DOC 31

$MAXDIGITS 15

$MIAXINT 2147483647

$MAXINTPWSU1 2147483648

$MIN INT -2147483648

$NAME BYTE INTEGER

A-3

HMA PARAMETERS

$NAXE LIST SERVER

$NW SPECIFICATION1 /safe/1.8.7/adasparc/acvc/Vval/X2120A

$MMIE_SPECIFICATICN2 /safe/1.8.7/adasparc/acvc/val/X2120B

$NRWE_SPECIFICATICN3 /safe/1.8.7/adasparc/acvc/val/X3119A

$NEG BASED INT 16#FFFFFFFE#

$NU;R_ MWSIZE 1024

$NEW STOR UNIT 8

$NEW SYS NAME SERVER

$PAGE_ TERMINATOR ASCII.LF & ASCII.FF

$RECCORDDEFIfUTION NMI INTEGER

$RECORDNAME INSTRUCTIONI

$TASK SIZE 32

Sm7SK_STORAGESIZE 2048

STICK 0.01001

$VARIABLE ADDRESS FCNDECL.VAR ADDRESS

$VARIABLE ADDRESS1 FCNDECL.VAR ADDRESS1

$VARIABLEAiDDEESS2 FCNDECL.VAR_ ADDRESS2

$YWE_ PRAQIA NO SUCH PRAI2

A-4

APPMDIX B

C0MPILATICN SYSTEI OPTICNS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

-D Use double precision for Ada type float.
-fC Compile only if necessary.
-fE Generate error log file.
-fL Generate exception location information.
-fN Suppress numeric checking.
-fo Prevent harmless changes to low level units from

forcing recompilation.
-fs Suppress all checks.
-fU Inhibit library update.
-fv Compile verbosely.
-fw Suppress warning messages.
-g Generate debug information.
-G Generate debug information for mULTI.
-help Display help.
-1 Generate listing file.
-L Use alternate library.
-N Do a dry run of the compilation.
-OLAIMS Perform Optimizations.
-P Print operations.
-p Generate profiling information.
-S Produce assembly code.
-Xnnn Turn on the -Xnnn option where nnn is a three digit integer.
-Znnn Turn off the -Xnnn option where rnn is a three digit integer.

B-1

COMPILATION SYSTEK OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

-f Suppress main program generation step.
-L Use alternate library.
-m Produce a primitive load map.
-n Suppress the linking of the object files, but do generate the

main program.
-N Do a dry run of the compilation.
-o Use alternate executable file output name.
-p Enable profiling.
-P Print operations.
-Q Link in an extra object file.
-r Create re-linkable output.
-v Link verbosely.
-w Suppress warnings.

B-2

APPENDIX C

APP••DIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type BYTE INTEGER is range -128 .. 127;
type L0G_--INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -3.40282346638529E+38 .. 3.40282346638529E+38;
type LONG_FLOAT is digits 15 range -1.79769313486231E+308

.. 1.79769313486231E+308 ;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD

C-1

APPENDIX F OF THE Ada STANDARD

Appendix F Implementation-Dependent Characteristics

This appendix lists implementation-dependent characteristics
of Green Hills Ada. Note that there are no preceding appendices.
This Appendix is called Appendix F in order to comply with the
Reference Manual for the Ada Prograimaing Language* (LRN)
ANSIiMIL-STD-1815A which states that this appendix be named
Appendix F.

Implemented Chapter 13 features include length clauses, enumeration
representation clauses, record representation clauses, address clauses,
interrupts, package system, machine code insertions, pragma
interface, and unchecked programuing.

F.1 Pragmas

The implemented pre-defined pragmas are:

elaborate See the LRM section 10.5.
interface See section F.1.1.
list See the LEM Appendix B.
pack See section F.1.2.
page See the LRM Appendix B.
priority See the LRM Appendix B.
suppress See section F.1.3.
inline See the LRN section 6.3.2.

The remaining pre-defined pragmas are accepted, but presently ignored:

controlled
optimize
system name
shared-
storage_unit
memory_size

Named parameter notation for pragmas is not supported.

When illegal parameter forms are encountered at compile time, the compiler
issues a warning message rather than an error, as required by the Ada
language definition. Refer to the ARM Appendix B for additional
information about the pre-defined pragmas.

F.1.1 Pragma Interface

The form of pragma interface in Green Hills Ada is:

pragma interface (language, subprogrogram [, "link-name"]);

C-2

APPEDIX F OF THE Ada STAIARD

where:

language This is the interface olanguage, one of the names assembly,
builtin, c or internal. The names builtin and internal
are reserved for use by Green Hills compiler maintainers
in run-time support packages.

subprogram This is the name of a subprogram to which the pragma
interface applies. If link-name is omitted, then the Ada
subprogram name is also used as the object code symbol
name. Depending on the language specified, some
automatic modifications may be made to the object code
symbol name.

link-name This is an optional string literal specifying the name
of the non-Ada subprogram corresponding to the Ada
subprogram named in the second parameter. If link-name
is omitted, then link-name defaults to the value of
subprogram translated to lowercase. Depending on the
language specified, some automatic modifications may
be made to the link-name to produce the actual object
code symbol name that is generated whenever references
are made to the corresponding AMa subprogram.

It is appropriate to use the optional link-name parameter
to pragma interface only when the interface subprogram
has a name that does not correspond at all to its AMa
identifier or when the interface subprogram name cannot
be given using rules for constructing AMa identifiers
(e.g. if the name contains a '$' character).

The characteristics of object code symbols generated for each interface
language are:

assembly The object code symbol is the same as link-name. If no
link-name string is specified, then the subprogram name
is translated to lowercase.

builtin The object code symbol is the same as link-name, but
prefixed with the string, " mss ".

This language interface is Yeseived for special
interfaces defined by Green Hills Software, Inc. The
builtin interface is presently used to declare certain
low-level run-time operations whose names must not
conflict with programmer-defined or language system
defined names.

c The object code symbol is the same as link-name, but with
one underscore character ('') prepended. This is the
convention used by the C compiler. If no link-name string
is specified, then the subprogram name is translated to
lowercase.

C-3

APPENDIX F OF THE Ada STANDAM

internal No object code symbol is generated for an internal language
interface; this language interface is reserved for special
interfaces defined by Green Hills Software, Inc. The
internal interface is presently used to declare certain
machine-level bit operations.

No automatic data conversions are performed on parameters of any interface
subprograms. It is up to the prograinr to ensure that calling conventions
match and that any necessary data conversions take place when calling
interface subprograms.

A pragma interface may appear within the same declarative part as the
subprogram to which the pragma interface applies, following the subprogram
declaration, and prior to the first use of the subprogram. A pragma
interface that applies to a subprogram declared in a package specification
must occur within the package body in this case. A pragma interface
declaration may appear in the private part of a package specification.
"Pragma interface for library units is not supported.

Refer to the LRM section 13.9 for additional information about pragma
interface.

F.1.2 Pragma Pack

Pragma pack is implemented for composite types (records and arrays).

Pragma pack is permitted following the composite type declaration to
which it applies, provided that the pragma occurs within the same
declarative part as the composite type declaration, before any objects
or components of the composite type are declared.

Note that the declarative part restriction means that the type declaration
and accompanying pragma pack cannot be split across a package specification
and body.

The effect of pragma pack is to minimize storage consumption by discrete
component types whose ranges permit packing. Use of pragma pack does not
affect the representations of real types, pre-defined integer types, and
access types.

F.1.3 Pragma Suppress

Pragma suppress is implemented as described int eh LRM section 11.7, with
these differences:

"* Presently, division check and overflow check must be suppressed
via a compiler flag- -fN; pragma suppress is ignored for these
two numeric checks.

"* The optional "ON ->" parameter name notation for pragma suppress
is ignored.

"* The optional second parameter to pragma suppress is ignored; the

C-4

APPENDIX F OF THE Ada STANDARD

pragma always applies to the entire scope in which it appears.

F.1.4 Pragma Inline

Pragmna inline is supported for procedures but not for functions.

F.2 Attributes

All attributes described in the LRM Appendix A are supported.

F.3 Standard Types

Additional standard types are defined in Green Hills Ada:
"* byte_integer

"* shortinteger

"* longinteger

The standard numeric types are defined as:

type byte integer is range -128 .. 127;

type shortinteger is range -32768 .. 32767;

type integer is range -2147483648 .. 2147483647;

type longinteger is range -2147483648 .. 2147483647;

type float is digits 6
range -3.40282E+38 .. 3.40282E+38;

type long float is digits 15
range -J.79769313486231E+308 .. 1.79769313486231E+308;

type duration is delta 0.0001 range -86400.0000 .. 86400.0000;

F.4 Package System

The specification of package system is:

package system is

type address is new longinteger;

type name is (server);

systemname : constant name :- server;

type targetsystems is
unix,
netos,
vms,

C-5

A• IX F OF THE Ada STANDARD

msdos,
bare,
Mac);

type target_machines is
vax,
z8001,
z8002,
z80000,
n68000,
m68020,
m68030,
.88000,
i8086,
180286,
i80386,
180486,
i860,
R2000,
R3000,
RS6000,
HPPA,
sparc);

target system : constant target systems :- unix;
targettachine : constant target_machines :- sparc;

storageunit : constant :-8;
Memory size : constant :-1024;

- System-Dependent Named Numbers

min int : constant :--2147483648;
max--nt : constant :-2147483647;
max-digits : constant :-15;
max mantissa : constant :-31;

fTne delta : constant :- 2.0 ** (-31);
tick -: constant :- 0.01001;

- Other System-Dependent Declarations

subtype priority is integer range 1 .. 20;

The value of system.memory_size is presently meaningless.

F.5 Restrictions on Representation Clauses

Green Hills Ada supports representation clauses including length clauses,
enumeration representation clauses, record representation clauses and
address clauses.

F.5.1 Length Clauses

C-6

APPDEIX F OF THE Ada STANDRD

A size specification(t'size) is rejected if fewer bits are specified
than can accommodate the type. The minimum size of a composite type
may be subject to application of pragmapack. It is permitted to specify
precise sizes for unsigned integer ranges, e.g. 8 for the range 0..255.
However, because of requirements imposed by the Aa language definition,
a full 32-bit range of unsigned values, i.e. O..(2**32)-l, cannot be
defined, even using a size specification.

The specification of collection size (t'storage size) is evaluated at
run-tim when the scope of the type to which thi length clause applies
is entered, and is therefore subject to rejection (via storage error)
based on available storage at the time the allocation is made.-
collection mayinclude storage used for run-time administration of the

collection, and therefore should not be expected to accomodate a
specific number of objects. Furthermore, certain classes of objects
such as unconstrained discriminant array components of records may be
allocated outside a given collection, so a collection may accommodate
more objects than might be expected.

The specification of storage for a task activation (t'storage size) is
evaluating at run-tim when a task to which the length clause-applies
is activated, and is therefore subject to rejection (via storage_error)
based on available storage at the time the allocation is made. Storage
reserved for a task activation is separate from storage needed for any
collections defined within a task body.

The specification of small for a fixed point type(t'small) is subject
only to restrictions defined in the LRM section 13.2.

F.5.2 Enumeration Representation Clauses

The internal code for the literal of an enumeration type named in an
enumeration representation clause must be in the range of standard.integer.

The value of an internal code may be obtained by applying an appropriate
instantiation of unchecked conversion to an integer type.

F.5.3 Record Representation Clauses

The storage unit offset (the at static simpleexpression part) is given
in terms of 8-bit storage units and must be even.

A bit position (the range part) applied to a discrete type component may
be in the range 0..15, with 0 being the least significant bit of a
component. A range specification may not specify a size smaller than can
accommodate the component. A range specification for a component not
accommodating bit packing may have a higher upper bound as appropriate
(e.g. 0..321 for a discriminant string component). Refer to the internal
data representation of a given component in determining the component
size and assigning offsets.

Components of discrete types for which bit positions are specified may
not stradle 16-bit word boundaries.

C-7

APPM•IX F OF THE Ada STANRD

The value of an alignment clause (the optional at mod part) must evaluate
to 1,2,4, or 8 and may not be smaller than the highest alignment required
by any component of the record.

F.5.4 Address Clauses

An address clause may be supplied for an object (whether constant or variable)
or a task entry, but not for a subprogram, package, or task unit. The
meaning of an address clause supplied for a task entry is given in section
F.5.5.
An address expression for an object is a 32-bit linear segmented memory
address of type system.address.

F.5 5 Interrupts

A task entry's address clause can be used to associate the entry with a uNix
signal. Values in the range 0..31 are meaningful, and represent the signals
corresponding to those values.
An interrupt entry may not have any parameters.

F.5.6 Change of Representation

There are no restrictions for changes of representation effected by means
of type conversion.

F.6 Inplementation-Dependent Ccwponents

No names are generated by the implementation to denote implementation-
dependent components.

F.7 Machine Code Insertions

Machine code insertions, described in the LRM section 13.8, are supported in
Green Hills Ada.

F.8 Unchecked Programming

The Green Hills Ada compiler supports the unchecked programming generic
library subprograms unchecked deallocation and unchecked conversion.
There are no restrictions on The use of unchecked converiion. Conversions
between objects whose sizes do not conform may result in storage areas
with undefined values.

F. 9 Input-Output Packages

A summary of the implementation-dependent input-output characteristics is:

"* In calls to open and create, the form parameter must be the
empty string (the default value).

"* More than one internal file can be associated with a single

C-8

APPEDIX F OF THE da STRNDMR

external file for reading only. For writing, only one internal
file may be associated with an external file; Do not use
reset to get around this rule.

* Temporary sequential and idirect files are given names.
Temporary files are deleted when they are closed.

* File I1/ is buffered; text files associated with terminal devices
are line-buffered.

* The packages sequential io and direct io cannot be instantiated
with unconstrained coqposite types or-record types with
discriminants without defaults.

F.10 Separate Compilation with Generics

A generic non-library subprogram body cannot be compiled as a subunit in a
separate file from its specification when instantiations precede the
subprogram body. Also, a generic library package body cannot be compiled in a
separate file from its specification when instantiations precede the
package body. A generic non-library package body can be compiled as a
stbunit in a separate file from its specification whether or not
instantiations precede the package body.

